Waldemar Siuda, dr hab. prof. UW

Foto

Department of Hydrobiology
Faculty of Biology, University of Warsaw
at Biological and Chemical Research Centre
Żwirki i Wigury 101
02-089 Warszawa
Tel.: +48 22 55 26597
Fax.: +48 22 55 26575

E-mail: w.siuda@biol.uw.edu.pl
Tel.: (4822) 55 26 692

 

Publications

Kiersztyn B., Chróst R., Kaliński T., Siuda W., Bukowska A., Kowalczyk G. & Grabowska K. (2019) Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci. Rep 9: 11144, doi: 10.1038/s41598-019-47577-8.

Grabowska K., Bukowska A., Kaliński T., Kiersztyn B., Siuda W., Chróst R. Presence and
  identification of Legionella and Aeromonas spp. in the Great Masurian Lakes system in the
  context of eutrophication. J. Limnol.
  https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2019.1924
Siuda W, Grabowska K, Kaliński T, Kiersztyn B, Chróst RJ (2020) Trophic State,
  Eutrophication and the Threats for Water Quality of the Great Mazurian Lakes System. In:
  Costa S. (Ed) Polish River Basins and Lakes – Part I: Biological Status of Water
  Management. The Handbook of Environmental Chemistry (HEC) Springer, pp: 231.
Kiersztyn B., Kauppinen E.S., Kaliński T., Chróst R.J., Siuda W. (2018) Quantitative
  description of respiration processes in meso-eutrophic and eutrophic freshwater environments.
  Journal of Microbiological Methods 149: 1-8.
Siuda W., Kauppinen E.S, Kaliński T, Chróst R.J, Kiersztyn B. (2017) The relationship
  between primary production and respiration in the photic zone of the Great Mazurian Lakes
  (GMLS), in relation to trophicconditions, plankton composition and other ecological factors.
  Polish J Ecol 65:303-323.
Kiersztyn B., Siuda W., Chróst R. (2017) Coomassie blue G250 for visualization of active
  bacteria from lake environment and culture. Polish J Microbiol 66:365–373.
Siuda W., Chróst R.J., Kalinowska K, Ejsmont-Karabin J, Kiersztyn B (2016) The role of
  planktonic organisms in urea metabolism in lakes of temperate zone - Case study. Polish J
  Ecol 64:468-484.
Kiersztyn B., Siuda W. & Chróst R. J. 2012. Persitence of bacterial proteolytic enzymes in  lake
  ecosystems. FEMS Microb. Ecol. Published online: DOI: 10.1111/j.1574-6941.2011.01276.x
Kiersztyn, B. & Siuda, W. 2007. Białka jako substrat pokarmowy dla mikroorganizmów
 wodnych. Post. Mikrob. 46: 355-366.
Siuda W., Kiersztyn B. & Chróst R.J. 2007. The dynamics of protein decomposition in lakes of
 different trophic status - reflections on the assessment of the real proteolytic activity in situ. - J.
 Microbiol. Biotechnol., 17: 897-904.
Siuda W. & Chróst, R.J. 2006. Urea and ureolytic activity in lakes of different trophic status. ─
 Polish J. Microbiol. 55: 211-225.
Chróst R.J. & Siuda W. 2006. Microbial production, utilization, and enzymatic degradation of
 organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the
 eutrophication gradient. - Limnol. Oceanogr. 51: 749-762.
Kiersztyn B., Siuda W. & Chróst R. J. 2002. Microbial Ectoenzyme Activity: Useful Parameters
 for Characterizing the Trophic Condition of Lakes. Polish Journal of Environmental Studies 11: 367-373.
Chróst R.J. & Siuda W. 2002. Ecology of microbial enzymes in lake ecosystems, str. 35-72. W:
 Burns, R. & Dick, R. (eds.), Enzymes In The Environment: Activity, Ecology, and Applications. - Mercel Dekker,Inc., New York.
Siuda W. & Chróst R.J. 2001. Utilization of selected dissolved organic phosphorus compounds
 by bacteria in lake water under non-limiting orthophosphate conditions. ─ Polish J. Environ.
 Stud. 10: 475-483.
Siuda W. & Chróst, R.J. 2000. Concentration and susceptibility of dissolved DNA for enzyme
 degradation in lake water – some methodological remarks. ─ Aquat. Microb. Ecol. 21: 195-201.
Siuda W., Chróst R.J. & Güde H. 1998. Distribution and origin of dissolved DNA in lakes of
 different traphic states.  ─ Aquat. Microb.Ecol. 15: 89-96.
Siuda W. & Güde,H. 1994. A comparative study on 5\'- nucleotidase (5\'-nase) and alkaline
 phosphatase (APA) activities in lakes. ─ Arch.Hydrobiol. 131: 211-229.
Siuda W. & Güde H. 1994. The role of phosphorus and organic carbon compounds in regulation
 of alkaline phosphatase activity and orthophosphate regeneration processes in lakes. ─ Pol.
 Arch. Hydrobiol. 41: 171-187.
Chróst R.J., Siuda W., Albrecht D. & Overbeck J. 1986. A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters. ─ Limnol. Oceanogr. 31: 662- 667.

Realizacja NETMAX