Piotr Maszczyk, PhD


Department of Hydrobiology
Faculty of Biology, University of Warsaw
at Biological and Chemical Research Centre
Żwirki i Wigury 101
02-089 Warszawa
Tel.: +48 22 55 26568
Fax.: +48 22 55 26575
Email: p.maszczyk@uw.edu.pl


Research interests:

I am interested in ecology and evolution of planktonic animals and fish. The goal of my recent studies is focused on finding the optimal distribution of Daphnia in overlapping gradients of food and predation risk in the water column, and on assessing the role of zooplankton in "active transport" of nitrogen from subsurface layers to the depth. My future plans consider the effects of cyanotoxins and temperature on learning abilities of planktivorous fish.


Grant projects:

(2020-2023) Project leader – grant OPUS 18 of National Science Centre (2019/35/B/NZ8/04523) on the effects of microplastics on several ecological interactions between aquatic organisms.

(2017-2020) Project leader – grant SONATA of National Science Centre (2016/23/D/NZ8/03532) on the Identification of mechanisms responsible for the increased prevalence of small-bodied species in zooplankton communities in warm lakes.

(2015-2020) Project leader – grant OPUS 8 of National Science Centre (2014/15/B/NZ8/00245) on the rapidity of numerical, behavioural, physiological, neurobiological and social responses to temperature increase (Q10) of planktivorous fish.

(2015-2017) Project leader – grant PRELUDIUM of National Science Centre (2014/13/N/NZ8/02462) on the vertical distribution of Daphnia as a result of optimizing decisions in the gradient of food concentration, temperature and predation risk.

(2014-2015) Project leader - grant ETIUDA of National Science Centre (2014/12/T/NZ8/00287) on the ideal free distribution (IFD) of Daphnia against gradients of food concentration, temperature and of individual risk of predation.

(2008-2012) Project leader – grant of Ministry of Science (N N304 067336) on the ideal free distribution (IFD) of Daphnia against gradients of food concentration and of individual risk of predation.



1. Maszczyk P., Tałanda J., Babkiewicz E., Leniowski K. and Urban P. (2021) Daphnia depth selection in gradients of light intensity from different artificial sources: an evolutionary trap? Limnology and Oceanography 00: 000-000.

2. Czub M., Nawała J., Popiel S., Brzeziński T., Maszczyk P., Sanderson H., Maser E., Gordon D., Dziedzic D., Dawidziuk B., Pijanowska J., Fabisiak J., Szubska M., Lang T., Vanninen P., Niemikoski H., Missiaen T., Lehtonen K., Bełdowski J. and Kotwicki L. (2021) Acute aquatictoxicity of arsenic-based chemical warfare agents to Daphnia magna. Aquatic Toxicology 00: 000-000. doi.org/10.1016/j.aquatox.2020.105693

3. Kunjiappan S., Sankaranarayanan M., Kumar B. K., Pavadai P., Babkiewicz E., Maszczyk P., Glodkowska-Mrowka E., Arunachalam S., Pandan S. R. K., Ravishankar V., Baskararaj S., Vellaichamy S., Arulmani  L. and Panneerselvam T. (2021) Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. Nanotechnology 32: 95-101

4. Brzeziński T., Czub M., Nawała J., Gordon D., Dziedzic D., Dawidziak B., Popiel S. and Maszczyk P. (2020) The effects of chemical warfare agent Clark I on the life histories and stable isotopes composition of Daphnia magna. Environmental Pollution 266: 115-142.

5. Czub M., Nawała J., Popiel S., Dziedzic D., Brzeziński T., Maszczyk P. Anderson H., Fabisiak J., Bełdowski J. and Kotwicki L. (2020) Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. Marine Environmental Research 161: 105077.

6. Babkiewicz E., Bazała M., Urban P., Maszczyk P., Markowska M. and Gliwicz Z. M. (2020) The effects of temperature on the proxies of visual detection of Danio rerio larvae: observations from the optic tectum. Biology Open 9: bio047779 doi: 10.1242/bio.047779

7. Kunjiappan S., Govindaraj S., Parasuraman P., Sankaranarayanan M., Arunachalam S. Palanisamy P., Mohan U.P., Babkiewicz E., Maszczyk P., Sivakumar V. and Theivendren P. (2020) Design, insilico modelling and functionality theory of folate receptor targeted Myricetin-loaded bovine serum albumin nanoparticle formulation for cancer treatment. Nanotechnology 00: 000-000. DOI: 10.1088/1361-6528/ab5c56

8. Maszczyk P., Babkiewicz E., Ciszewski K., Dąbrowski K., Dynak P., Krajewski K., Urban P. Żebrowski M. and Wilczyński W. (2019) Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. Journal of Plankton Research 41: 709-722.

9. Wilczynski W., Dynak P., Babkiewicz E., Bernatowicz P., Leniowski K. and Maszczyk P. (2019) The combined effects of hypoxia and fish kairomones on several physiological and life history traits of Daphnia. Freshwater Biology 64: 2204-2220.

10. Maszczyk P. and Brzeziński T. (2018) Body size, maturation size and growth rate of Crustaceans. Book chapter 2. Natural History of The Crustacea. Vol 5 (Life histories) Eds. M. Thiel i G. Wellborn.

11. Maszczyk P., Babkiewicz E., Czarnocka-Cieciura M. Gliwicz Z.M., Uchmański J. and Urban P. (2018) Ideal free distribution of Daphnia under predation risk – model predictions and experimental verification. Journal of Plankton Research 40: 471-485.

12. Tałanda J., Maszczyk P. and Babkiewicz E. (2018) The reaction distance of a planktivorous fish (Scardinius erythrophthalmus) and the evasiveness of its prey (Daphnia pulex × pulicaria) under different artificial light spectra. Limnology 19: 311-319.

13. Maszczyk P. and Wurtsbaugh W.A. (2017) Brine shrimp grazing and fecal production increase sedimentation to the deep brine layer (monimolimnion) of Great Salt Lake, Utah. Hydrobiologia 802: 7-22.

14. Maszczyk P. (2016) Miniature plankton columns used to study the depth distribution of zooplankton in gradients of food, predation risk, temperature, and UV radiation. Limnology and Oceanography Methods. 14: 210-223.

15. Gliwicz Z. M. and Maszczyk P. (2016) Heterogeneity in prey distribution allows for higher food intake in planktivorous fish, particularly when hot. Oecologia 180: 383–399.

16. Bartosiewicz M., Jabłoński J., Kozłowski J. and Maszczyk P. (2015) Brood space limitation of reproduction may explain growth after maturity in differently sized Daphnia species. Journal of Plankton Research 37: 417-428.

17. Maszczyk P., and Gliwicz Z. M. (2014) Selectivity by planktivorous fish at different prey densities, heterogeneities and spatial scales. Limnology and Oceanography 59: 68-78. Pdf

18. Maszczyk P., Bartosiewicz M., Jurkowski J.E., and Wyszomirski T. (2014) Temperature, prey density and interference competition in a planktivorous fish (Rutilus rutilus). Limnology 15: 155-162. Pdf

19. Gliwicz Z. M., Maszczyk P., Jabłoński J., and Wrzosek D. (2013) Patch exploitation by planktivorous fish and the concept of aggregation as an antipredation defense in zooplankton. Limnology and Oceanography 58: 1621-1639.

20. Maszczyk P., and Bartosiewicz M. (2012) Threat or treat: the role of fish exudates in the growth and life history of Daphnia. Ecosphere 3 (10): 1–19. Pdf

21. Gliwicz Z. M., and Maszczyk P., Uszko W. (2012) Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation? Freshwater Biology 57 (6): 1166–1179. Pdf

22. Maszczyk P. (2008) Koncepcja rozmieszczenia idealnie swobodnego: czy tylko zasoby? Wiadomości Ekologiczne LIV. 3: 113–141. Pdf

23. Gliwicz Z. M., and Maszczyk P. (2007) Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia 150: 706–715.

24. Gliwicz Z. M., Dawidowicz P., and Maszczyk P. (2006) Low-density anti-predation refuge in Daphnia and Chaoborus? Archiv fuer Hydrobiologie 167: 101–114.

25. Ozimek T., and Maszczyk P. (2006) Effect of Phragmites australis on soil processes in horizontal subsurface flow constructed wetlands. Proc. International Conference on Wetland Systems for Water Pollution Control 1035–1043. Pdf

Realizacja NETMAX